Crushing Load Formula:
Definition: This calculator determines the crushing load of a column using Rankine's formula, which combines Euler's buckling load and Rankine's critical load.
Purpose: It helps structural engineers determine the maximum load a column can bear before failure occurs due to buckling or crushing.
The calculator uses Rankine's formula:
Where:
Explanation: The formula combines both buckling and crushing failure modes to predict the actual failure load of intermediate-length columns.
Details: Accurate calculation ensures structural safety, prevents column failure, and helps in optimal material selection for construction projects.
Tips: Enter Rankine's critical load and Euler's buckling load in Newtons, and specify tolerance percentage (default ±5%). Euler's load must be greater than Rankine's load.
Q1: What's the difference between Rankine's and Euler's loads?
A: Euler's load considers buckling failure in long columns, while Rankine's load addresses crushing failure in short columns.
Q2: Why include a tolerance percentage?
A: Tolerance accounts for material imperfections, construction tolerances, and safety factors in real-world applications.
Q3: What units should I use?
A: The calculator uses Newtons (N) for all load values. Convert other units to Newtons before input.
Q4: When is Rankine's formula most applicable?
A: For intermediate-length columns where both buckling and crushing are potential failure modes.
Q5: How do I determine Rankine's critical load?
A: Use Rankine's formula: \( P_r = \frac{\sigma_c \times A}{1 + \alpha(\frac{L}{k})^2} \), where σc is crushing stress, A is area, α is Rankine's constant, L is length, and k is radius of gyration.