Thickness Formula:
Definition: This calculator determines the required thickness of a tapered bar to withstand thermal stress caused by temperature changes.
Purpose: It helps engineers design tapered bars that can accommodate thermal expansion without failure.
The calculator uses the formula:
Where:
Explanation: The formula accounts for the geometric taper of the bar and the material's response to thermal changes.
Details: Proper thickness calculation prevents thermal stress failure, ensures structural integrity, and optimizes material usage.
Tips: Enter all required parameters including thermal stress, material properties, temperature change, and depth measurements. The tolerance field (default ±5%) allows for manufacturing variations.
Q1: What is a typical value for coefficient of linear thermal expansion?
A: For steel it's about 12×10⁻⁶/K, aluminum about 23×10⁻⁶/K, but varies by material.
Q2: Why is the natural logarithm used in the formula?
A: The ln(D2/D1) term accounts for the tapered geometry's non-linear stress distribution.
Q3: How does temperature change affect the required thickness?
A: Greater temperature changes require thicker sections to accommodate the resulting thermal stress.
Q4: What happens if D1 equals D2?
A: The formula becomes undefined as it would represent a non-tapered bar (uniform thickness).
Q5: How should I set the tolerance percentage?
A: 5% is common, but adjust based on manufacturing capabilities and safety requirements.