Formula Used:
From: | To: |
The Total Surface Area of a Dodecahedron is the total quantity of plane enclosed by the entire surface of this polyhedron. A dodecahedron is a three-dimensional shape with 12 regular pentagonal faces, 20 vertices, and 30 edges.
The calculator uses the formula:
Where:
Explanation: This formula calculates the total surface area of a regular dodecahedron based on the radius of its circumscribed sphere.
Details: Calculating the surface area of geometric solids is fundamental in mathematics, engineering, architecture, and various scientific applications. It helps in material estimation, heat transfer calculations, and structural analysis.
Tips: Enter the circumsphere radius in meters. The value must be positive and greater than zero. The calculator will compute the total surface area of the dodecahedron.
Q1: What is a dodecahedron?
A: A dodecahedron is a polyhedron with 12 flat faces, each being a regular pentagon. It is one of the five Platonic solids.
Q2: What is the circumsphere radius?
A: The circumsphere radius is the radius of the sphere that contains the dodecahedron such that all vertices lie on the sphere's surface.
Q3: Can this formula be used for irregular dodecahedrons?
A: No, this formula is specifically for regular dodecahedrons where all faces are congruent regular pentagons.
Q4: What are the practical applications of dodecahedrons?
A: Dodecahedrons are used in various fields including geometry education, dice design, architectural structures, and molecular modeling.
Q5: How accurate is this calculation?
A: The calculation is mathematically exact for perfect regular dodecahedrons. The accuracy depends on the precision of the input values.