Formula Used:
From: | To: |
The Radius of Neutral Axis is the radius of the axis of the curved beam passing through the points which have zero stress on them. It represents the location where bending stress transitions from compression to tension in a curved beam.
The calculator uses the formula:
Where:
Explanation: This formula calculates the radius of the neutral axis for a curved beam of circular section by taking the square roots of the inner and outer radii, summing them, squaring the result, and dividing by 4.
Details: Accurate determination of the neutral axis radius is crucial for stress analysis in curved beams, structural design calculations, and ensuring proper load distribution in curved structural elements.
Tips: Enter the radius of outer fibre and radius of inner fibre in meters. Both values must be positive numbers, and the outer radius must be greater than the inner radius.
Q1: Why is the neutral axis important in curved beams?
A: The neutral axis determines the distribution of bending stresses in curved beams, helping engineers calculate maximum stresses and design safe structural elements.
Q2: What is the difference between neutral axis in straight vs curved beams?
A: In straight beams, the neutral axis coincides with the centroidal axis, but in curved beams, the neutral axis shifts toward the center of curvature due to the curvature effect.
Q3: Can this formula be used for non-circular sections?
A: No, this specific formula applies only to circular cross-sections. Different formulas exist for other cross-sectional shapes.
Q4: What are typical applications of this calculation?
A: This calculation is used in the design of curved structural elements such as arches, hooks, rings, and curved beams in various engineering applications.
Q5: How does the neutral axis affect stress distribution?
A: The neutral axis marks the transition point where bending stress changes from compressive (on one side) to tensile (on the other side), with maximum stresses occurring at the extreme fibers.